

Wireless Location Accuracy: Dispatchable Location & 3D Positioning

TREY FORGETY NENA DIRECTOR, GOVERNMENT AFFAIRS RICHARD KELLY NENA LIAISON, NSGIC

Indoor Stats

- ~50% of households are wireless only
- >40% of population is wireless only
- >=70% of 9-1-1 calls are wireless
- >=50% of wireless 9-1-1 calls est. indoor
- •>=200,000 indoor wireless calls / day

Policy Background

•FCC rules require wireless providers to transmit the location of outdoor wireless test calls, within certain parameters for accuracy.

•Outdoor rules adopted in 1996, revised in 2010.

Outdoor Accuracy Rules

•Network-Based Tech. (typically GSM providers):

• 67% of test calls within 150m, 90% test of calls within 300m.

•Handset-based Tech. (typically CDMA providers):

- 67% of test calls within 50m, 90% of test calls within 150m.
- •Upon request, carriers must supply confidence and uncertainty data along with position estimates.

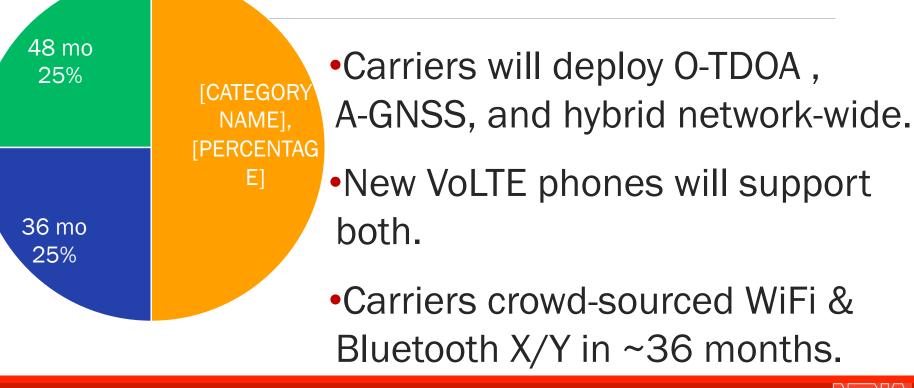
What Needs Improving?

- •Ability to locate wireless callers indoors
- Indoor locations are 3D
- •X/Y(/Z) regime is not ideal for built environments
- •Carrier drive testing is opaque to public safety users

Consensus Solution

•Shift emphasis from L/Lo to Civic Address & Sub-Address

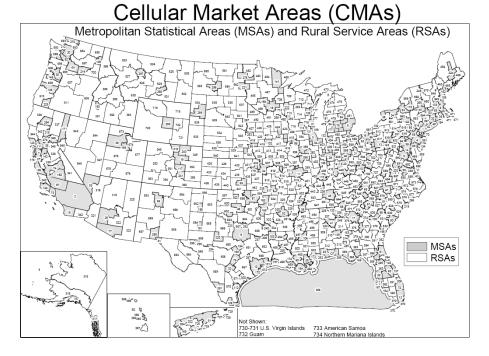
- Establish National Emergency Address Database to correlate WiFi and Bluetooth beacons with addresses.
- •Improve X/Y performance indoors, too
 - Standardize confidence at 90%; continue binned uncertainty
- Add Z-Axis capabilities
 - Short-Term: Deploy uncompensated barometry
 - Long-Term: Establish a vertical metric in meters & codify



Dispatchable Location

+38.806 -077.058 U=50 C=90% ↓ 1700 Diagonal Rd Ste 500 Alexandria VA 22314

Improving L/Lo Tech


Standard Confidence **Position** 、 determining Uncertainty "*u*" is proportional to system is 95% the confidence factor "c". confident that true position falls The smaller the confidence Ο within this circle percentage, the shorter the Uconfidence=63% reported uncertainty distance. position **Position** -The larger the confidence 0 determining percentage, the longer the system is 63% uncertainty distance. Uconfidence=95% confident that true 🗱 true position falls position within this circle

Vertical Information

Vertical Location Information

- •Within 6 years, carriers must, for each of the top 25 Cellular Market Areas (by population) deploy *either:*
 - 1 DL reference point for every 4 residents; or
 - Z-Axis technology covering at least 80% of the population.

Characterizing Performance

- •Individual location technologies and carrier networks will be tested in open, transparent, controlled, randomized, and vendor-neutral testbeds in Atlanta and San Francisco.
- •Carriers must certify that their networks are configured, and will perform, similarly outside the testbeds.
- •Network performance will be actively monitored in 6 "monitored markets:"

Characterizing Performance

- •Individual location technologies and carrier networks will be tested in open, transparent, controlled, randomized, and vendor-neutral testbeds in Atlanta and San Francisco.
- •Carriers must certify that their networks are configured, and will perform, similarly outside the testbeds.
- •Network performance will be actively monitored in 6 "monitored markets:"
 - Atlanta, Chicago, Denver, New York, Philadelphia, San Francisco

Characterizing Performance

- •Individual location technologies and carrier networks will be tested in open, transparent, controlled, randomized, and vendor-neutral testbeds in Atlanta and San Francisco.
- •Carriers must certify that their networks are configured, and will perform, similarly outside the testbeds.
- •Network performance data will be actively monitored in 6 "monitored markets," and available to every PSAP.

Performance Metrics

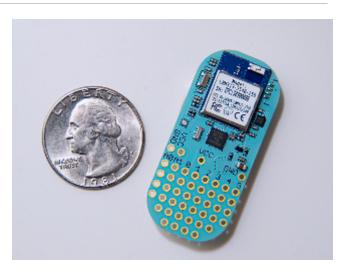
6 "Monitored Markets"

What Isn't Changing

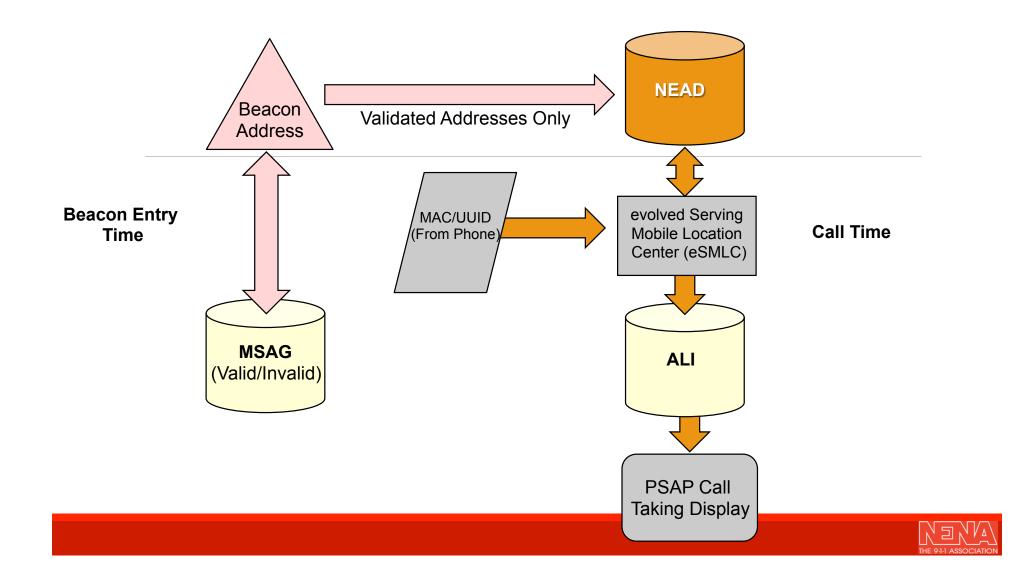
- •Latitude / Longitude / Uncertainty
- •ALI Formats
- •MSAG / LVF Validation of Addresses
- Best estimate available from network

Dispatchable Location Defined

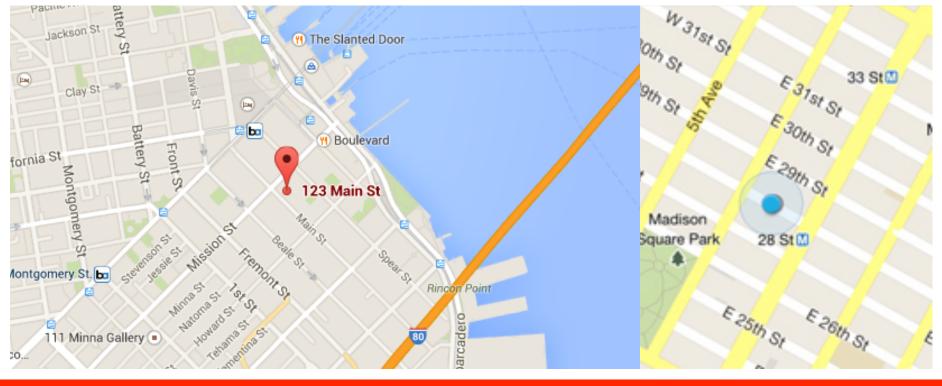
"A location...that consists of the street address of the calling party, plus... suite, apartment or similar information


WPH2 1700 DIAGONAL ROAD SUITE 500 ALEXANDRIA VA

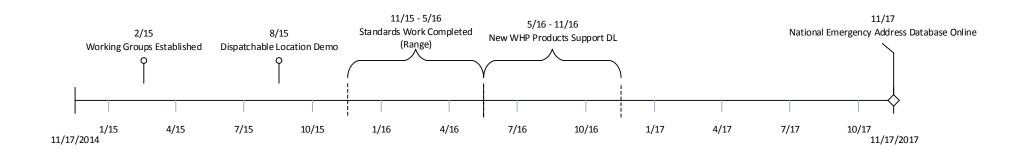
DL Tech



WiFi MAC Address 04:0A:1A:66:BF:F1



Bluetooth LE UUID 123e4567-e89b-12d3-a456-426655440000



Corroboration

Timeline

NEAD Development

- •The NEAD stores records that correlate WiFi MAC addresses and Bluetooth UUIDs with civic addresses, including floor, suite, apartment number, etc.
- •Target on-line date is November 2017.
- •NEAD Working Group established 2015. Roger Hixson is representing NENA.
- •NEAD LLC has been established by the carriers and CTIA; NENA is a member of the NEAD advisory board.

NEAD Provisioning

•NEAD entries can come from three sources:

- Service-order provisioning by wireline/cable/fibre carriers when customers establish service with a carrier-provided device.
- Customer provisioning when customers supply their own device.
- Building owner provisioning for integrated (e.g., smoke detector, exit sign) devices.

•Carriers must reach a NEAD density of 1 beacon per 4 people in each monitored market to avoid a supplementary z-axis requirement.

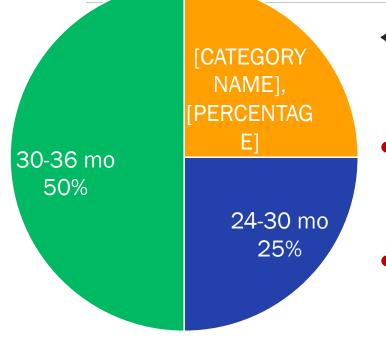
NEAD Data Validation

•NEAD data will be validated against the best available address data standard at time of entry:

- For E9-1-1 systems, validate against MSAG (address only)
- For NG9-1-1 systems, validate against LVF (address & sub-address)
- •NAD address data may be used by *either* (or both) the NEAD and the local MSAG/LVF as a "sanity check."
- •NENA will continue to be actively involved with NAD development efforts to ensure the NAD complements LVF/NEAD capabilities.

NEAD X/Y/Z Data

- •NENA is working to ensure that NEAD entries include the best-available X/Y/Z data in addition to civic address.
 - Some device-based corroboration may be required for "good" data.
 - Reverse geo-coding quality is *highly* dependent on map-base data quality.
- •NEAD data will follow the NENA-standard data model to ensure ALI compatibility.



NEAD Privacy & Security

- •Parties to the Roadmap Agreement must develop a comprehensive privacy and security plan to ensure the NEAD is never compromised or used for a purpose other than locating emergency callers.
- •The broader Roadmap Advisory Committee will be consulted as the plan is developed.

DL Roll Out

- ←Post-Standards Deployment of new VoLTE Handsets
- Network-wide support at standards + 24 months
- Delivery to ALI providers at standards + 48 months

Formal Evaluation

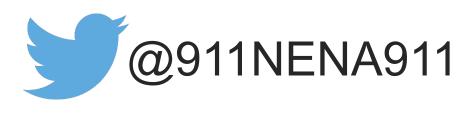
•NENA and APCO continuously evaluate carrier performance and adherence to timelines.

- •Reasonable variations (e.g., standards development cycles) are expected, but will be monitored.
- •At 36 months, a major assessment will determine whether the development and deployment of Dispatchable Location technology is "on track."

•If not, carriers must supplement DL with Lat/Lon and *Altitude* technologies.

To learn more...

9-I-I GOES


Arlington, VA | Feb. 21-24, 2016 nena.org/gtw

nena.org/nena2016

Follow & Like!

